Skip to main content

Proxy Config.yaml

Set model list, api_base, api_key, temperature & proxy server settings (master-key) on the config.yaml.

Param NameDescription
model_listList of supported models on the server, with model-specific configs
litellm_settingslitellm Module settings, example litellm.drop_params=True, litellm.set_verbose=True, litellm.api_base, litellm.cache
general_settingsServer settings, example setting master_key: sk-my_special_key
environment_variablesEnvironment Variables example, REDIS_HOST, REDIS_PORT

Example Config​

model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-eu
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key:
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key:
rpm: 6
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-large
api_base: https://openai-france-1234.openai.azure.com/
api_key:
rpm: 1440

litellm_settings:
drop_params: True
set_verbose: True

general_settings:
master_key: sk-1234 # [OPTIONAL] Only use this if you to require all calls to contain this key (Authorization: Bearer sk-1234)


environment_variables:
OPENAI_API_KEY: sk-123
REPLICATE_API_KEY: sk-cohere-is-okay
REDIS_HOST: redis-16337.c322.us-east-1-2.ec2.cloud.redislabs.com
REDIS_PORT: "16337"
REDIS_PASSWORD:

Config for Multiple Models - GPT-4, Claude-2​

Here's how you can use multiple llms with one proxy config.yaml.

Step 1: Setup Config​

model_list:
- model_name: zephyr-alpha # the 1st model is the default on the proxy
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: huggingface/HuggingFaceH4/zephyr-7b-alpha
api_base: http://0.0.0.0:8001
- model_name: gpt-4
litellm_params:
model: gpt-4
api_key: sk-1233
- model_name: claude-2
litellm_params:
model: claude-2
api_key: sk-claude
info

The proxy uses the first model in the config as the default model - in this config the default model is zephyr-alpha

Step 2: Start Proxy with config​

$ litellm --config /path/to/config.yaml

Step 3: Use proxy​

Curl Command

curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "zephyr-alpha",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'

Config for Embedding Models - xorbitsai/inference​

Here's how you can use multiple llms with one proxy config.yaml. Here is how LiteLLM calls OpenAI Compatible Embedding models

Config​

model_list:
- model_name: custom_embedding_model
litellm_params:
model: openai/custom_embedding # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:8000/
- model_name: custom_embedding_model
litellm_params:
model: openai/custom_embedding # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:8001/

Run the proxy using this config

$ litellm --config /path/to/config.yaml

Save Model-specific params (API Base, API Keys, Temperature, Headers etc.)​

You can use the config to save model-specific information like api_base, api_key, temperature, max_tokens, etc.

Step 1: Create a config.yaml file

model_list:
- model_name: gpt-4-team1
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
azure_ad_token: eyJ0eXAiOiJ
- model_name: gpt-4-team2
litellm_params:
model: azure/gpt-4
api_key: sk-123
api_base: https://openai-gpt-4-test-v-2.openai.azure.com/
- model_name: mistral-7b
litellm_params:
model: ollama/mistral
api_base: your_ollama_api_base
headers: {
"HTTP-Referer": "litellm.ai",
"X-Title": "LiteLLM Server"
}

Step 2: Start server with config

$ litellm --config /path/to/config.yaml

Load API Keys from Vault​

If you have secrets saved in Azure Vault, etc. and don't want to expose them in the config.yaml, here's how to load model-specific keys from the environment.

os.environ["AZURE_NORTH_AMERICA_API_KEY"] = "your-azure-api-key"
model_list:
- model_name: gpt-4-team1
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
api_key: os.environ/AZURE_NORTH_AMERICA_API_KEY

See Code

s/o to @David Manouchehri for helping with this.

Config for setting Model Aliases​

Set a model alias for your deployments.

In the config.yaml the model_name parameter is the user-facing name to use for your deployment.

In the config below requests with model=gpt-4 will route to ollama/llama2

model_list:
- model_name: text-davinci-003
litellm_params:
model: ollama/zephyr
- model_name: gpt-4
litellm_params:
model: ollama/llama2
- model_name: gpt-3.5-turbo
litellm_params:
model: ollama/llama2

Set Custom Prompt Templates​

LiteLLM by default checks if a model has a prompt template and applies it (e.g. if a huggingface model has a saved chat template in it's tokenizer_config.json). However, you can also set a custom prompt template on your proxy in the config.yaml:

Step 1: Save your prompt template in a config.yaml

# Model-specific parameters
model_list:
- model_name: mistral-7b # model alias
litellm_params: # actual params for litellm.completion()
model: "huggingface/mistralai/Mistral-7B-Instruct-v0.1"
api_base: "<your-api-base>"
api_key: "<your-api-key>" # [OPTIONAL] for hf inference endpoints
initial_prompt_value: "\n"
roles: {"system":{"pre_message":"<|im_start|>system\n", "post_message":"<|im_end|>"}, "assistant":{"pre_message":"<|im_start|>assistant\n","post_message":"<|im_end|>"}, "user":{"pre_message":"<|im_start|>user\n","post_message":"<|im_end|>"}}
final_prompt_value: "\n"
bos_token: "<s>"
eos_token: "</s>"
max_tokens: 4096

Step 2: Start server with config

$ litellm --config /path/to/config.yaml